
This article was downloaded by: On: *27 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Organic Preparations and Procedures International Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t902189982

PREPARATION OF PHENYLGLYCOLIC ACIDS AND SODIUM *p*-(N,N-DIALKYLAMINO)PHENYLGLYCOLATES

Alan R. Katritzky^a; Barbara Galuszka^a; Stanislaw Rachwal^a; Doreen Lynch^b

^a Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL ^b Information Imaging & Electronic Sector Laboratory, 3M Corporation, St Paul, MN

To cite this Article Katritzky, Alan R., Galuszka, Barbara, Rachwal, Stanislaw and Lynch, Doreen(1993) 'PREPARATION OF PHENYLGLYCOLIC ACIDS AND SODIUM *p*-(N,N-DIALKYLAMINO)PHENYLGLYCOLATES', Organic Preparations and Procedures International, 25: 5, 557 — 562 To link to this Article: DOI: 10.1080/00304949309457998 URL: http://dx.doi.org/10.1080/00304949309457998

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PREPARATION OF PHENYLGLYCOLIC ACIDS AND SODIUM *p*-(N,N-DIALKYLAMINO)PHENYLGLYCOLATES

Alan R. Katritzky*[§], Barbara Galuszka[§], Stanislaw Rachwal[§] and Doreen Lynch[#]

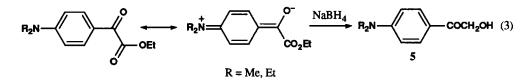
Center for Heterocyclic Compounds, Department of Chemistry University of Florida, Gainesville, FL 32611-2046

*Information Imaging & Electronic Sector Laboratory, 3M Corporation, St. Paul, MN 55144

Phenylglycolic acid derivatives, especially esters, have found applications as pharmaceuticals owing to their wide physiological activity. They have recently been shown to possess interesting antimuscarinic,¹ antihypertensive,² antiallergic³ and antihistaminic⁴ activities. Other esters of phenylglycolic acid have been used as repellents of flour beetles⁵ or as additives for thermal recording materials.⁶

Neither of the two routes to barium p-(N,N-dimethylamino)phenylglycolate is convenient. The first proceeds by the addition of hydrogen cyanide to p-(N,N-dimethylamino)benzaldehyde, hydrolysis of the resulting nitrile with concentrated sulfuric acid to the corresponding benzamide and subsequent hydrolysis with barium hydroxide to barium p-(N,N-dimethylamino)phenylglycolate.⁷ The second method involves condensation of N,N-dimethylaniline with chloral and hydrolysis of the obtained 1-[p-(dimethylamino)phenyl]-2,2,2-trichloroethanol with sodium hydroxide.⁸ A third route proceeds by condensation of N,N-dimethylaniline with methyl α , β -dioxobutyrate and cleavage of the α -acetyl-p-(N,N-dimethylamino)phenylglycolic acid thus obtained with potassium hydroxide to afford the final product as the potassium salt.⁹ The use of p-(N,N-dimethylamino)phenylglycolic acid (as pyrylium mandelates) in silver-free recording materials is described in a patent.¹⁰ From the literature, the best method for the preparation of p-alkyl- and p-alkoxyphenylglycolic acids appears to be a phase-transfer catalytic reaction of aromatic aldehydes with chloroform and 50% aqueous sodium hydroxide (Eq. 1).¹¹ Although we successfully applied this procedure for preparation of two new compounds, p-hexyl- and p-hexyloxyphenylglycolic acids gave complex mixtures.

ArCHO + CHCl₃
$$\xrightarrow{50\% \text{ NaOH}}$$
 $\xrightarrow{1}$
TEBAC $\xrightarrow{1}$
a) Ar = p-(n-C₆H₁₃)C₆H₄; b) Ar = p-(n-C₆H₁₃O)C₆H₄ (1)


^{© 1993} by Organic Preparations and Procedures Inc.

KATRITZKY, GALUSZKA, RACHWAL AND LYNCH

We found that a modification of Kindler's procedure¹² involving condensation of N,N-dialkylanilines with ethyl oxalyl chloride in the presence of aluminum chloride in nitrobenzene, followed by reduction of the ketoester 2 to hydroxyester 3 and finally hydrolysis of 3, can conveniently be applied to the preparation of p-(N,N-dialkylamino)phenylglycolic acids (Eq. 2).

ArH
$$\frac{\text{EtO}_2\text{CCOCl}}{\text{TiCl}_4, \text{CH}_2\text{Cl}_2} \stackrel{\textbf{O}}{=} \begin{array}{c} & \textbf{OH} & \textbf{OH} \\ & \textbf{ArCCO}_2\text{Et} & \textbf{ArCHO}_2\text{Et} \\ &$$

Following this procedure but using titanium tetrachloride in methylene chloride at -10°, we prepared ethyl *p*-(N,N-dimethylamino)- (2a)¹³ and *p*-(N,N-diethylamino)phenylglyoxylate (2b) from the corresponding N,N-dialkylanilines and ethyl oxalyl chloride in 40% and 48% yields, respectively. The reduction of 2a and 2b with sodium borohydride in methanol at room temperature gave mixtures of the expected hydroxyesters 3a and 3b together with the unexpected vicinal diols 4a and 4b. It is probable that the strong coupling of the nitrogen lone pair through the π -system of the aromatic ring strongly decreases the positive charge of the keto carbonyl carbon atom; thus the ester carbonyl group becomes more reactive (Eq. 3) and is reduced first giving the alcohols 5 which are then slowly reduced to the diols (4). Deactivation of the ester carbonyl group by hydrolysis to the acid 6¹³

followed by reduction with sodium borohydride in THF, according to the literature method for reduction of functionalized ketones,¹⁴ afforded sodium salts of p-(N,N-dimethylamino)- and p-(N,N-diethylamino)phenylglycolic acids (**7a** and **7b**) in 90% and 60% yields, respectively (Eq. 4). Compounds **7** were characterized without conversion to phenylglycolic acids because their acidification gives ionic compounds (zwitterions) which are difficult to extract from aqueous solutions. Salt **7b** appeared to be highly hygroscopic. It can easily be converted into ethyl α -ethoxy-p-(N,N-diethylamino)phenylacetate (**8b**) in refluxing ethanol in the presence of sulfuric acid.

$$2 \xrightarrow{\text{NaOH}} \stackrel{\text{O}}{\underset{\text{ArCCO}_2\text{H}}{\overset{\text{NaBH}_4}{\longrightarrow}}} \xrightarrow{\text{OH}} \stackrel{\text{OH}}{\underset{\text{ArCHCO}_2\text{Na}^+}{\overset{\text{I}}{\longrightarrow}}} \xrightarrow{\text{OH}} \stackrel{\text{OH}}{\underset{\text{I}}{\overset{\text{I}}{\longrightarrow}}} \xrightarrow{\text{OH}} \stackrel{\text{OH}}{\underset{\text{I}}{\xrightarrow{\text{I}}}} \xrightarrow{\text{OH}} \stackrel{\text{I}}{\underset{\text{I}}{\xrightarrow{\text{I}}}} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{OH}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{I}} \xrightarrow{\text{OH}} \xrightarrow{\text{I}} \xrightarrow{\xrightarrow{I}} \xrightarrow{\text{I}$$

PHENYLGLYCOLIC ACIDS AND SODIUM p-(N,N-DIALKYLAMINO)PHENYLGLYCOLATES

EXPERIMENTAL SECTION

Melting points were determined with a hot-stage microscope and are uncorrected. ¹H and ¹³C NMR spectra were recorded on a Varian VXR-300 spectrometer. Chemical shifts are in parts per million (δ) relative to TMS. Coupling constants (J) are in Hertz (Hz).

Phenylglycolic Acids 1. General Procedure.- A 50% aqueous NaOH solution (12.5 mL) was added portionwise at 40° to a solution of benzaldehyde (0.05 mol) and triethylbenzylammonium chloride (0.62g, 0.0025 mol) in CHCl₃ (8 mL). Then the mixture was stirred at 58° for 6 hrs. After cooling, the reaction mixture was poured into water (300 mL) and extracted with diethyl ether (2 x 70 mL). The aqueous layer was acidified with 50% H_2SO_4 and extracted with diethyl ether (4 x 80 mL). The solvent was evaporated and the residue was recrystallized from benzene.

p-Hexylphenylglycolic Acid (1a), colorless solid (2.07g, 18% yield), mp. 106-107°. ¹H NMR: δ 0.88 (m, 3H), 1.29 (m, 6H), 1.58 (m, 2H), 2.58 (t, 2H, J = 9.0), 5.17 (s, 1H), 7.15 (d, 2H, J = 9.0), 7.29 (d, 2H, J = 9.0). ¹³C NMR: δ 14.1, 22.5, 29.0, 31.3, 31.7, 35.6, 72.5, 126.5 (2C), 128.8 (2C), 134.5, 143.8, 178.0 (C=O).

Anal. Calcd. for C₁₄H₂₀O₃: C, 71.16; H, 8.53. Found: C, 71.16; H, 8.67

p-Hexyloxyphenylglycolic Acid (1b), colorless solid (4.63g, 37% yield), mp. 92.5-93.5°. ¹H NMR: δ 0.90 (t, 3H, J = 6.9), 1.38 (m, 6H), 1.75 (m, 2H), 3.93 (t, 2H, J = 6.5), 5.07 (s, 1H), 6.86 (d, 2H, J = 8.7), 7.35 (d, 2H, J = 8.6), 7.18 (bs, 2H, OH). ¹³C NMR: δ 13.8, 22.4, 25.5, 29.0, 31.3, 67.8, 72.0 (2C), 114.2 (2C), 127.7 (2C), 130.8, 158.9, 175.3 (C=O).

Anal. Calcd. for C₁₄H₂₀O₄: C, 66.65; H, 7.99. Found: C, 66.82; H, 7.98

Ethyl *p*-(N,N-Dialkylamino)phenylglyoxylates 2. General Procedure.- Ethyl oxalyl chloride (15.0 g, 0.11 mol) was added to a solution of the N,N-dialkylaniline (0.10 mol) in CH_2Cl_2 (150 mL) at -10° and then TiCl₄ (41.74 g, 0.22 mol) was added dropwise at -15°. The reaction mixture was stirred at -10° for 4 hrs, poured into ice (400 g) and the layers were separated. The aqueous layer was extracted with diethyl ether (6 x 100 mL), the combined organic extracts were washed with water, 10% solution of Na₂CO₃, water again and dried over MgSO₄. After removal of the solvents the crude product was sufficiently pure to be used directly in the next step.

Ethyl *p***-(N,N-Dimethylamino)phenylglyoxylate (2a)**, yellow prisms (8.85 g, 40% yield), mp. 93°, lit.¹³ mp. 95°. ¹H NMR: δ 1.41 (t, 3H, J = 7.2), 3.10 (s, 6H), 4.41 (q, 2H, J = 7.2), 6.66 (d, 2H, J = 9.0), 7.90 (d, 2H, J = 9.0). ¹³C NMR: δ 14.1, 40.0 (2C), 61.7, 110.8 (2C), 120.2, 132.5 (2C), 154.5, 165.0 (O-C=O), 184.1 (C=O).

Ethyl *p*-(N,N-Diethylamino)phenylglyoxylate (2b), yellow oil (11.94 g, 48% yield), purification by column chromatography (silica gel/CHCl₃) gave an analytical sample. ¹H NMR: δ 1.20 (t, 6H, J = 7.1), 1.40 (t, 3H, J = 7.1), 3.44 (q, 4H, J = 7.1), 4.41 (q, 2H, J = 7.1), 6.64 (d, 2H, J = 9.3), 7.87 (d, 2H, J = 9.3). ¹³C NMR: δ 12.3 (2C), 14.1, 44.7 (2C), 61.6, 110.5 (2C), 119.5, 132.7 (2C), 152.3, 165.0 (O-C=O), 183.7 (C=O).

Anal. Calcd. for C₁₄H₁₉NO₃: C, 67.45; H, 7.68; N, 5.62. Found: C, 67.37; H, 7.72; N, 5.51

Reduction of Ethyl *p*-(N,N-Dialkylamino)phenylglyoxylate 2 with NaBH₄. General Procedure.-To a stirred solution of ester 2 (0.0045 mol) in methanol (10 mL) was added portionwise NaBH₄ (0.2 g, 0.005 mol) at 20°. The reaction mixture was stirred continuously for 0.5 hr, poured into ice-water (20 g) and extracted with CHCl₃. The combined extracts were washed with water and dried over MgSO₄. The solvent was evaporated and the residue was subjected to column chromatography (silica gel/CHCl₃) to give α -hydroxyester 3 (R_r 0.32, 3a) and diol 4 (R_r 0.05, 4a).

Ethyl *p*-(N,N-Dimethylamino)phenylglycolate (3a), colorless solid (0.51 g, 51% yield), mp. 76°. ¹H NMR: δ 1.22 (t, 3H, J = 7.0), 2.94 (s, 6H), 3.35 (d, 1H, J = 5.4), 4.19 (dq, 1H, J = 10.8 and J = 8.6), 4.20 (dq, 1H, J = 10.8 and J = 8.6), 5.05 (d, 1H, J = 4.9), 6.71 (d, 2H, J = 8.8), 7.25 (d, 2H, J = 8.8). ¹³C NMR: δ 14.0, 40.3 (2C), 61.7, 72.6, 112.2 (2C), 126.1, 127.4 (2C), 150.5, 174.0 (C=O).

Anal. Calcd. for C₁₂H₁₇NO₃: C, 64.55; H, 7.67; N, 6.27. Found: C, 64.46; H, 7.68; N, 6.24

p-(N,N-Dimethylamino)phenyl-1,2-ethanediol (4a), colorless solid (0.32 g, 40% yield), mp. 81-82°. ¹H NMR: δ 2.91 (s, 6H), 3.30 (sb, 2H, OH), 3.61 (d, 2H, J = 6.8), 4.65 (t, 1H, J = 6.8), 6.68 (d, 2H, J = 8.7), 7.18 (d, 2H, J = 8.7). ¹³C NMR: δ 40.6 (2C), 67.9, 74.4, 112.5 (2C), 127.1, 128.4 (2C), 150.3. *Anal.* Calcd. for C₁₀H₁₅NO₂: C, 66.27; H, 8.34; N, 7.73. Found: C, 65.88; H, 8.32; N, 7.50

Ethyl *p*-(N,N-Diethylamino)phenylglycolate (3b), colorless oil (0.79g, 70% yield). ¹H NMR: δ 1.14 (t, 6H, J = 7.0), 1.22 (t, 3H, J = 7.0), 3.33 (q, 4H, J = 7.0), 4.19 (dq, 1H, J = 10.8 and J = 8.6), 4.20 (dq, 1H, J = 10.8 and J = 8.6), 5.03 (d, 1H, J = 4.3), 6.63 (d, 2H, J = 8.9), 7.21 (d, 2H, J = 8.9). ¹³C NMR: δ 12.4 (2C), 14.0, 44.2 (2C), 61.7, 72.7, 111.4 (2C), 124.9, 127.7 (2C), 147.7, 174.1 (C=O).

Anal. Calcd. for C₁₄H₂₁NO₃: C, 66.91; H, 8.42; N, 5.57. Found: C, 66.80; H, 8.45; N, 5.62

p-(N,N-Diethylamino)phenyl-1,2-ethanediol (4b), colorless solid (0.28g, 30% yield), mp. 101-102°. ¹H NMR: δ 1.15 (t, 6H, J = 7.0), 2.35 (sb, 2H, OH), 3.35 (q, 4H, J = 7.0), 3.69 (d, 2H, CH₂O, J = 6.2), 4.69 (t, 1H, J = 6.0), 6.65 (d, 2H, J = 8.7), 7.19 (d, 2H, J = 8.7). ¹³C NMR: δ 12.5 (2C), 44.3 (2C), 67.9, 74.5, 111.6 (2C), 126.9, 127.4 (2C), 147.7.

Anal. Calcd. for C₁₂H₁₀NO₂: C, 68.87; H, 9.15; N, 6.69. Found: C, 68.96; H, 9.20; N, 6.59

p-(N,N-Dialkylamino)phenylglyoxylic Acids 6. General Procedure.- A mixture of ethyl p-(N,N-dialkylamino)phenylglyoxylate (2, 0.05 mol) and 10% NaOH (30 mL) was stirred at 20° for 6 hrs and product was neutralized with 10% HCl. The solid acid was collected, washed with cold water and dried.

p-(**N**,**N**-Dimethylamino)phenylglyoxylic Acid (6a), light yellow solid (8.0 g, 83% yield), mp. 186-187°, lit.¹³ mp. 187°. ¹H NMR: δ 3.05 (s, 6H), 6.72 (d, 2H, J = 9.0), 7.74 (d, 2H, J = 9.0). ¹³C NMR: δ 39.5 (2C), 110.7 (2C), 119.5, 131.4 (2C), 153.9, 168.1 (O-C=O), 187.6 (C=O).

p-(N,N-Diethylamino)phenylglyoxylic Acid (6b), yellow solid (9.05 g, 82% yield), mp. 102-103°. ¹H NMR: δ 1.22 (t, 6H, J = 7.0), 3.46 (q, 4H, J = 7.0), 6.65 (d, 2H, J = 9.4), 8.30 (d, 2H, J = 9.4), 10.31 (s, 1H). ¹³C NMR: δ 12.4 (2C), 44.8 (2C), 110.8 (2C), 118.8, 134.6 (2C), 152.9, 163.1 (HO-C=O), 180.0 (C=O).

Anal. Calcd. for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.47; H, 7.01; N, 6.33

Sodium p-(N,N-Dialkylamino)phenylglycolate 7. General Procedure.- To a stirred suspension of

the p-(N,N-dialkylamino)phenylglyoxylic acid (6, 0.05 mol) in THF (50 mL) was added portionwise $NaBH_4$ (1.89 g, 0.05 mol) at 0°. The reaction mixture was stirred at 20° for 8 hrs and the solid product was recrystallized from ethanol.

Sodium *p*-(**N**,**N**-Dimethylamino)phenylglycolate (**7a**), colorless solid (9.7 g, 90% yield), mp. 248-249° (dec.). ¹H NMR: δ 2.82 (s, 6H), 4.41 (d, 1H, J = 4.5), 4.87 (d, 1H, J = 4.5), 6.61 (d, 2H, J = 9.0), 7.18 (d, 2H, J = 9.0. ¹³C NMR: δ 40.6 (2C), 73.4, 118.9 (2C), 127.1 (2C), 132.2, 149.2, 175.9 (C=O). *Anal.* Calcd. for C₁₀H₁₂NO₃Na: C, 55.30; H, 5.57; N, 6.45. Found: C, 55.28; H, 5.49; N, 6.35

Sodium *p*-(**N**,**N**-Diethylamino)phenylglycolate (**7b**), colorless solid (7.3 g, 60% yield), mp. 188-189° (dec.). ¹H NMR: δ 0.76 (t, 3H, J = 6.9), 2.97 (q, 4H, J = 6.9), 4.58 (s, 1H), 6.61 (d, 2H, J = 8.2), 7.00 (d, 2H, J = 8.2). ¹³C NMR: δ 12.9 (2C), 46.3 (2C), 76.1, 116.8 (2C), 129.6 (2C), 131.7, 149.6, 180.9 (C=O); it was not sufficiently stable to be submitted for analysis.

Ethyl α-**Ethoxy-***p*-(**N**,**N**-diethylamino)phenylacetate (8).- A mixture of sodium *p*-(**N**,**N**-diethylamino)phenylglycolate (**7b**, 2.45 g, 0.01 mol), ethanol (10 mL) and H_2SO_4 (d = 1.84) (1.4 mL, 0.025 mol) was refluxed for 2 hrs. After evaporation of the excess ethanol, the residue was dissolved in ethyl acetate and washed with water, 10% NaHCO₃, water again and dried over Na₂CO₃. Removal of the solvent gave **8** as a pure colorless oil (1.67 g, 60% yield). ¹H NMR: δ 1.15 (t, 6H, NEt₂ J = 7.0), 1.23 (t, 3H, CO₂Et, J = 7.0), 1.25 (t, 3H, OEt, J = 7.0), 3.34 (q, 4H, J = 7.0), 3.51 (m, 2H, CO₂Et), 4.12 (dq, 1H, OEt, J = 10.7 and J = 8.2), 4.22 (dq, 1H, OEt, J = 10.8 and J = 8.2), 4.74 (s, 1H), 6.63 (d, 2H, J = 9.0), 7.26 (d, 2H, J = 9.0). ¹³C NMR: δ 12.5 (2C), 14.1, 15.1, 44.2 (2C), 60.8, 64.6, 80.7, 111.3 (2C), 122.9, 128.5 (2C), 147.9, 171.6 (C=O).

Anal. Calcd. for C₁₆H₂₅NO₃: C, 68.79; H, 9.02; N, 5.01. Found: C, 68.52; H, 9.03; N, 5.02

Acknowledgments.- We thank Dr. M. Gordeev of this group for the procedure for the preparation of ethyl p-(N,N-diethylamino)phenylglyoxylate.

REFERENCES

- W. J. Rzeszotarski, R. E. Gibson, W. C. Eckelman and R. C. Reba, U. S. Pat. 4,644,003 (1987); Chem. Abstr., 106, 176197r (1987); M. Nicola, A. Donetti, E. Cereda, M. Turconi, G. B. Schiavi and R. Micheletti, Eur. Pat. EP 309,425 (1989); Chem. Abstr., 111, 214499d (1989).
- M. Miocque, P. Binet and H. Galons, Fr. Pat. 2,615,188 (1988); Chem. Abstr., 111, 114877g (1989); H. Galons, C. Cave, M. Miocque, P. Rinjard, G. Tran and P. Binet, Eur. J. Med. Chem., 25, 785 (1990).
- J. M. Yanni and D. A. Walsh, S. African Pat. 86 04,458 (1987); Chem. Abstr., 112, 98399r (1990); J. M. Yanni and D. A. Walsh, U. S. Pat. 4,950,674 (1990); Chem. Abstr., 115, 49413u (1991).
- N. Kawahara, K. Nozawa, S. Nakajima, K. Kawai and M. Yamazaki, J. Chem. Soc., Chem. Commun., 951 (1989); S. Sato, T. Abe, K. Kawai and N. Kawahara, Jpn. Pat. 02,215,785 [90,215,785] (1990); Chem. Abstr., 114, 60450d (1991).

KATRITZKY, GALUSZKA, RACHWAL AND LYNCH

- 5. W. R. Halliday, T. P. McGovern and L. L. McDonald, J. Entomol. Sci., 21, 322 (1986); Chem. Abstr., 106, 209408r (1987).
- K. Tsuchiya, S. Araki, S. Inagaki and T. Kitao, Jpn. Pat. 63,134,283 [88,134,283] (1988); Chem. Abstr., 109, 201657n (1988); M. Ohashi, K. Hayakawa and H. Furuya, Jpn. Pat. 01,113,281 [89,113,281] (1989); Chem. Abstr., 112, 66830h (1990).
- 7. F. Sachs and W. Lewin, Ber., 35, 3569 (1902).
- 8. M. P. Hebert, Bull. Soc. Chim. Fr., 27, 45 (1920).
- 9. A. Guyot and V. Badonnel, C. R. Acad. Sci., 148, 847 (1909).
- 10. W. Guenther, I. Griebenow and D. Fassler, Ger. Pat. DD 250,594 (1987); Chem. Abstr., 109, 46279v (1988).
- 11. A. Merz, Synthesis, 724 (1974).
- 12. K. Kindler, W. Metzendorf and D. Kwok, Ber., 76, 308 (1943).
- 13. W. Michler and U. Hanhardt, *ibid.*, 10, 2081 (1877).
- 14. M. Yatagai and T. Ohnuki, J. Chem. Soc. Perkin Trans. 1, 1826 (1990).

(Received January 27, 1993; in revised form April 20, 1993)